Online Testing of Federated and Heterogeneous
Distributed Systems

Marco Canini, Vojin Jovanovi¢, Daniele Venzano, Dejan Novakovi¢, and Dejan Kosti¢
_ School of Computer and Communication Sciences, EPFL, Switzerland
{marco.canini,vojin.jovanovic,daniele.venzano,dejan.novakovic,dejan.kostic;@epfl.ch

ABSTRACT

DiCE is a system for online testing of federated and het-
erogeneous distributed systems. We have built a prototype
of DiCE and integrated it with an open-source BGP router.
DiCE quickly detects three important classes of faults, re-
sulting from configuration mistakes, policy conflicts and pro-
gramming errors.

The goal of this demo is to showcase our DiCE prototype
while it executes an experiment that involves exploring BGP
system behavior in a topology with 27 BGP routers and
Internet-like conditions (Figure 1).

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks|: Distrib-
uted Systems

General Terms
Reliability

Keywords

Online testing, Fault detection, Federated and heterogeneous
distributed systems

1. INTRODUCTION

The successfully deployed distributed systems typically
use open interfaces, but often end up being heterogeneous
due to the creation of multiple implementations. Moreover,
the success drives deployment across the wide-area network,
which then leads to the systems becoming federated to al-
low separate administrative domains to retain control over
the local nodes’ configuration. A prime example of such a
system is the Internet’s inter-domain routing, today based
on BGP.

The important services these systems provide have to re-
main uninterrupted over long periods of time. However, the
unanticipated interaction of nodes under seemingly valid
configuration changes and local fault-handling can have a
profound effect. For example, the Internet’s routing has
suffered from multiple IP prefix hijackings, as well as per-
formance and reliability problems due to emergent behavior
resulting from a local session reset.

Copyright is held by the author/owner(s).
SIGCOMM’11, August 15-19, 2011, Toronto, Ontario, Canada.
ACM 978-1-4503-0797-0/11/08.

Ass AS10

Figure 1: A graphical interface showing the execution of
DiCE over a topology with 27 BGP routers.

In a position paper [3], we argued that making heteroge-
neous and federated distributed systems reliable is challeng-
ing because (i) the source code of every node may not be
readily available for testing and (i7) competitive concerns are
likely to induce individual providers to keep private much of
their current state and configuration.

In an effort to increase distributed system reliability, our
overarching vision is to harness the continuous increases in
available computational power and bandwidth. Specifically,
we argue that the system should proactively detect potential
faults that can occur in it due to, for example, programming
errors, policy conflicts, and operator mistakes. In this work,
our goal is to explore system behavior so to find node actions
that lead to faults.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of our approach. Section 3 high-
lights certain prototype details and evaluation results. Fi-
nally, Section 4 discusses some related material.

2. APPROACH OVERVIEW

We propose DiCE, an approach that continuously and au-
tomatically explores the system behavior, to check whether
the system deviates from its desired behavior. At a high-
level, as illustrated in Figure 2, DiCE (i) creates a snap-
shot consisting of lightweight node checkpoints, (ii) orches-
trates the exploration of relevant system behaviors across



-
/' e
& -

=

—
1. Choose explorer and trigger
snapshot creation

@@

2. Establish consistent shadow
snapshot of local node checkpoints

Y oL

3. Explore input 1 over
cloned snapshot 1

/--

& -

4. Explore input 2 over
cloned snapshot 2

5. Explore input 3 over
cloned snapshot 3

Figure 2: DiCE systematically explores and checks sys-
tem behavior over isolated snapshots.

the snapshot by subjecting system nodes to many possible
inputs that exercise node actions, and (7i7) checks for viola-
tions of properties that capture the desired system behavior.
DiCE starts exploring from current system state, and oper-
ates alongside the deployed system but in isolation from it.
In this way, testing can account for the current code, state
and configuration of the system. DiCE reuses existing pro-
tocol messages to the extent possible for interoperability and
ease of deployment.

DiCE drives exploration by using concolic execution [4] to
produce inputs that systematically explore all possible paths
at one node. Concolic execution® is an automated software
testing technique that executes a program by treating the
inputs to the program as symbolic. A concolic execution en-
gine tracks the constraints of the code branches on symbolic
inputs encountered during execution. For each constraint,
it then queries a solver to find a value that negates the con-
straint and leads down to a different code path.

We face several difficult challenges in our work. Because
of the federated nature and heterogeneity of the systems we
target, we cannot drive system behavior from atop. DiCE
explores system behavior by letting each node autonomously
exercise its local actions and observe their system-wide con-
sequences over a set, of lightweight checkpoints. Second, ap-
proaches that systematically explore code paths easily run
into the problem of exponential explosion of possible code
paths. Three insights allow us to manage this problem: (7)
we start exploring from current system state so that we avoid
to replay a long history of inputs to explore deep in code be-
havior. (i) We localize and focus on code that changes state
(e.g., message handlers). This decision allows us to quickly
explore relevant code paths, whereas other code such as mes-
sage parsers could be tested offline. (iii) We subject the
node’s code to small-sized inputs, and apply grammar-based
fuzzing to produce a large number of valid inputs. Lastly,
it is challenging to detect faults by checking for violations
of properties while there cannot be unrestricted access to
remote node states because the systems we target are feder-
ated. We define a narrow information-sharing interface that

LA variant of symbolic execution. Concolic stands for CON-
Crete + symbOLIC.

allows nodes to communicate the result of local state checks
while preserving confidential information.

3. DiCE PROTOTYPE AND EVALUATION

We have successfully integrated DiCE with the BGP im-
plementation of the BIRD open-source router [1]. We use the
Oasis concolic execution engine [4] as the basis for code path
exploration. For integrating with BIRD, we first change its
BGP implementation to mark certain inputs as symbolic.
We choose to treat UPDATE messages as the basis to derive
new inputs during exploration. For instance, the Network
Layer Reachability Info (NLRI) region of the message con-
tains the announced routes with their respective netmask
lengths. We mark these as symbolic. An UPDATE message
also typically carries multiple path attributes each of which
is encoded as a type, length, and value fields that are also
treated as symbolic. In practice, this choice allows DiCE
to construct inputs that exercise BGP behavior in two di-
mensions: the first due to BIRD’s code implementing BGP,
the second as the result of the particular configuration cur-
rently in use. This is because the source code instrumenta-
tion encompasses the BIRD’s configuration interpreter and
so allows Oasis to record constraints for the interpreted con-
figuration. Therefore, the explored execution paths are com-
prehensive of both code and configuration. Finally, we con-
sider behaviors due to configuration changes. We treat as
symbolic the condition that describes whether a route is the
locally most preferred one. This allows us to systematically
explore the outcome of BGP’s route selection process.

Our evaluation using a set of BGP routers in a testbed
with Internet-like conditions demonstrates DiCE’s effective-
ness, low overhead, and ease of integration with existing
software written in C. Specifically, our prototype quickly
detects faults that can occur due to programming errors,
policy conflicts, and operator mistakes.

4. RELATED MATERIAL

Our work is on-going. We published a position paper in
[3], and a paper describing our initial design and prototype is
in [2]. A presentation of DiCE given at the RIPE62 meeting
is available at http://ripe62.ripe.net/archives/video/
96. A technical report in [4] fully describes Oasis, the con-
colic execution engine we use.

5. REFERENCES

[1] The BIRD Internet Routing Daemon.
http://bird.network.cz.

[2] M. Canini, V. Jovanovié, D. Venzano, B. Spasojevié,
O. Crameri, and D. Kosti¢. Toward Online Testing of
Federated and Heterogeneous Distributed Systems. In
USENIX ATC, June 2011.

[3] M. Canini, D. Novakovié¢, V. Jovanovié¢, and D. Kosti¢.
Fault Prediction in Distributed Systems Gone Wild. In
LADIS, July 2010.

[4] O. Crameri, R. Bachwani, T. Brecht, R. Bianchini,

D. Kosti¢, and W. Zwaenepoel. Oasis: Concolic
Execution Driven by Test Suites and Code
Modifications. Technical Report
LABOS-REPORT-2009-002, EPFL, 2009.



